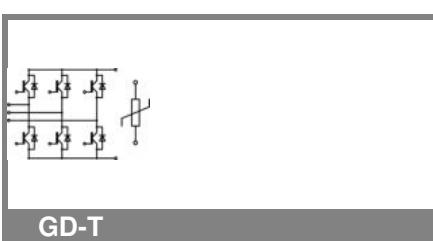


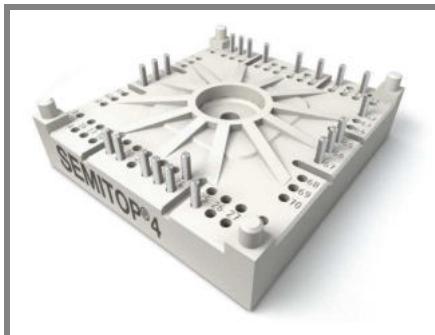
IGBT Module

SK100GD066T

Preliminary Data

Features


- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor


Typical Applications*

- Inverter up to 22 kVA
- Typ. motor power 11 kW

Absolute Maximum Ratings		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT				
V_{CES}	$T_j = 25^\circ\text{C}$	600		V
I_C	$T_j = 175^\circ\text{C}$ $T_s = 25^\circ\text{C}$ $T_s = 70^\circ\text{C}$	105 85		A A
I_{CRM}	$I_{CRM} = 2 \times I_{Cnom}$	200		A
V_{GES}		± 20		V
t_{psc}	$V_{CC} = 360\text{ V}$; $V_{GE} \leq 20\text{ V}$; $T_j = 125^\circ\text{C}$ $V_{CES} < 600\text{ V}$	6		μs
Inverse Diode				
I_F	$T_j = 175^\circ\text{C}$ $T_s = 25^\circ\text{C}$ $T_s = 70^\circ\text{C}$	99 79		A A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	120		A
Module				
$I_{t(RMS)}$				A
T_{vj}		-40 ... +175		$^\circ\text{C}$
T_{stg}		-40 ... +125		$^\circ\text{C}$
V_{isol}	AC, 1 min.	2500		V

Characteristics		$T_s = 25^\circ\text{C}$, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1,6\text{ mA}$	5	5,8	6,5	V
I_{CES}	$V_{GE} = 0\text{ V}$, $V_{CE} = V_{CES}$ $T_j = 25^\circ\text{C}$ $T_j = 125^\circ\text{C}$			0,005	mA
I_{GES}	$V_{CE} = 0\text{ V}$, $V_{GE} = 20\text{ V}$ $T_j = 25^\circ\text{C}$ $T_j = 125^\circ\text{C}$		600		nA
V_{CEO}		0,9 0,8	1,1 1		V
r_{CE}	$V_{GE} = 15\text{ V}$ $T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	5,5 8,5	7,5 10,5		$\text{m}\Omega$
$V_{CE(sat)}$	$I_{Cnom} = 100\text{ A}$, $V_{GE} = 15\text{ V}$ $T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$	1,45 1,65	1,85 2,05		V
C_{ies} C_{oes} C_{res}	$V_{CE} = 25$, $V_{GE} = 0\text{ V}$ $f = 1\text{ MHz}$	6,1 0,38 0,18			nF nF nF
$t_{d(on)}$ t_r E_{on}	$R_{Gon} = 32\text{ }\Omega$ $V_{CC} = 300\text{ V}$ $I_C = 100\text{ A}$	144 128 7			ns ns mJ
$t_{d(off)}$ t_f E_{off}	$R_{Goff} = 32\text{ }\Omega$ $di/dt = 2575\text{ A}/\mu\text{s}$ $T_j = 150^\circ\text{C}$ $V_{GE} = -7/+15\text{ V}$	1040 91 6			ns ns mJ
$R_{th(j-s)}$	per IGBT	0,65			K/W

SEMITOP® 4

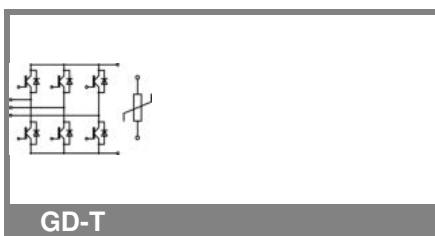
IGBT Module

SK100GD066T

Preliminary Data

Features

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor


Typical Applications*

- Inverter up to 22 kVA
- Typ. motor power 11 kW

Characteristics		min.	typ.	max.	Units
Symbol	Conditions				
Inverse Diode					
$V_F = V_{EC}$	$I_{Fnom} = 100 \text{ A}$; $V_{GE} = 0 \text{ V}$ $T_j = 25 \text{ }^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150 \text{ }^\circ\text{C}_{\text{chiplev.}}$		1,3		V
V_{FO}	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 150 \text{ }^\circ\text{C}$		0,95		V
r_F	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 150 \text{ }^\circ\text{C}$		3,5		$\text{m}\Omega$
I_{RRM} Q_{rr} E_{rr}	$I_F = 100 \text{ A}$ $\text{di/dt} = 2575 \text{ A}/\mu\text{s}$ $V_{CC} = 300 \text{ V}$	$T_j = 150 \text{ }^\circ\text{C}$	60		A
$R_{th(j-s)D}$	per diode		5,6		μC
M_s	to heat sink	1,7			mJ
w			0,8		K/W
Temperature sensor					
R_{100}	$T_s = 100 \text{ }^\circ\text{C}$ ($R_{25} = 5 \text{ k}\Omega$)		493±5%		Ω

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

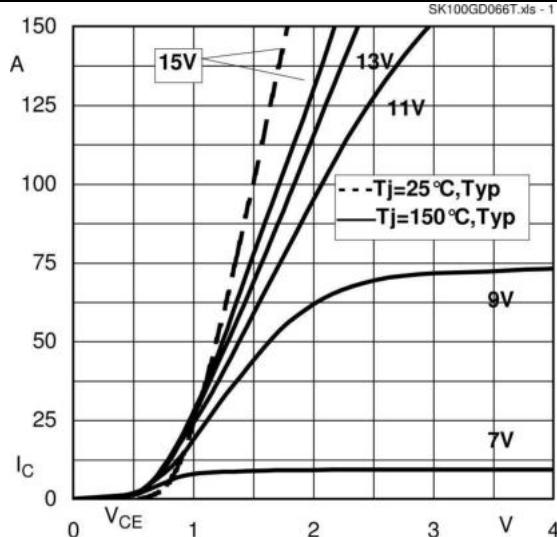


Fig. 1 Typ. output characteristic, inclusive $R_{CC} + EE$

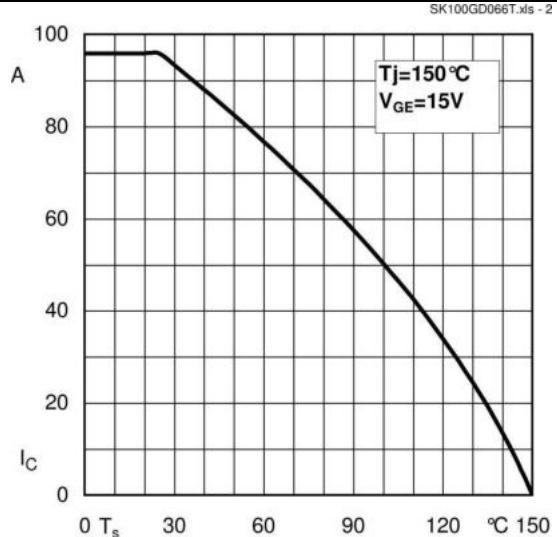


Fig. 2 Rated current vs. temperature $I_C = f(T_s)$

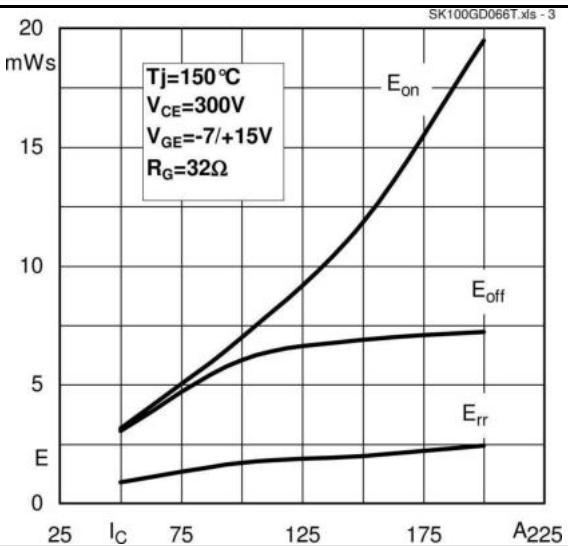


Fig. 3 Typ. turn-on /-off energy = $f(I_C)$

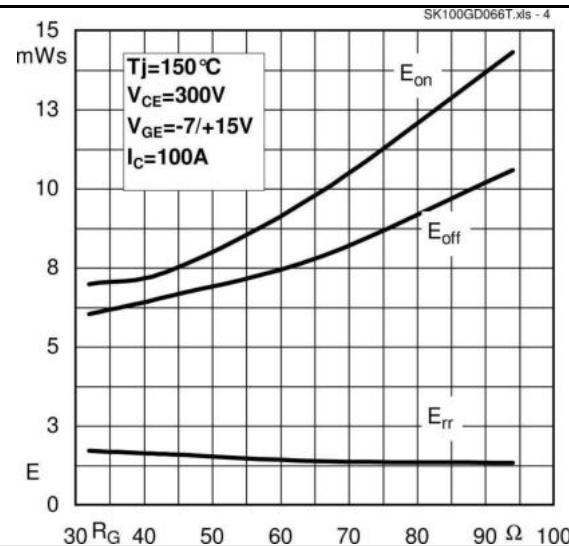


Fig. 4 Typ. turn-on /-off energy = $f(R_G)$

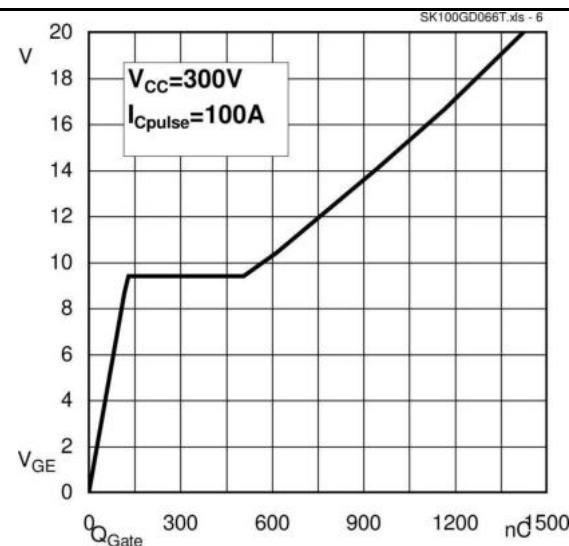


Fig. 6 Typ. gate charge characteristic

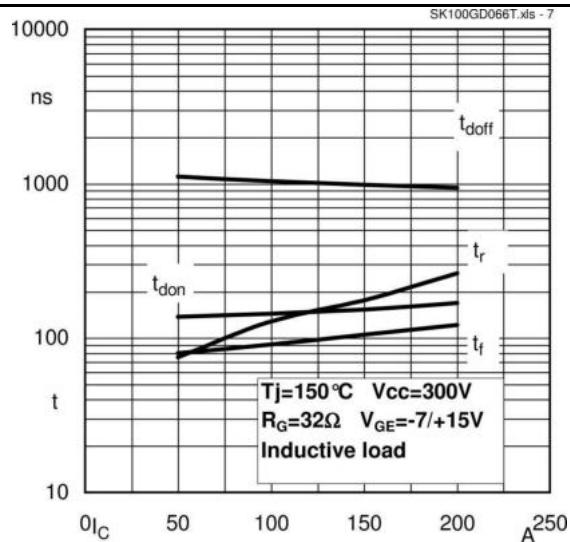


Fig. 7 Typ. switching times vs. I_C

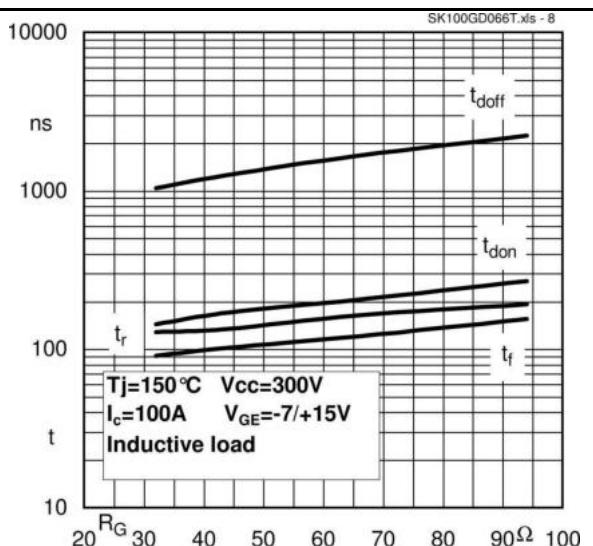
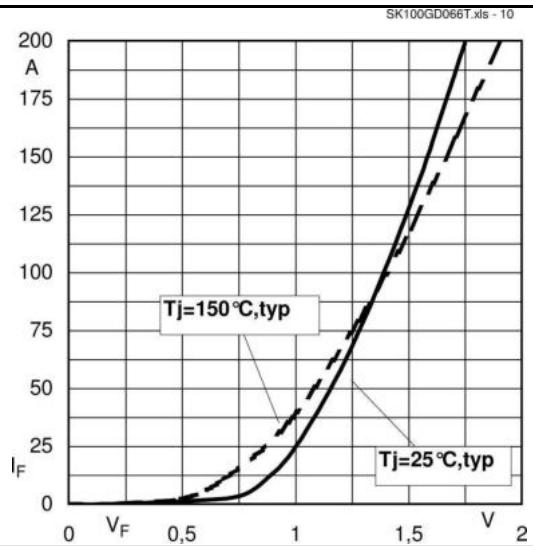
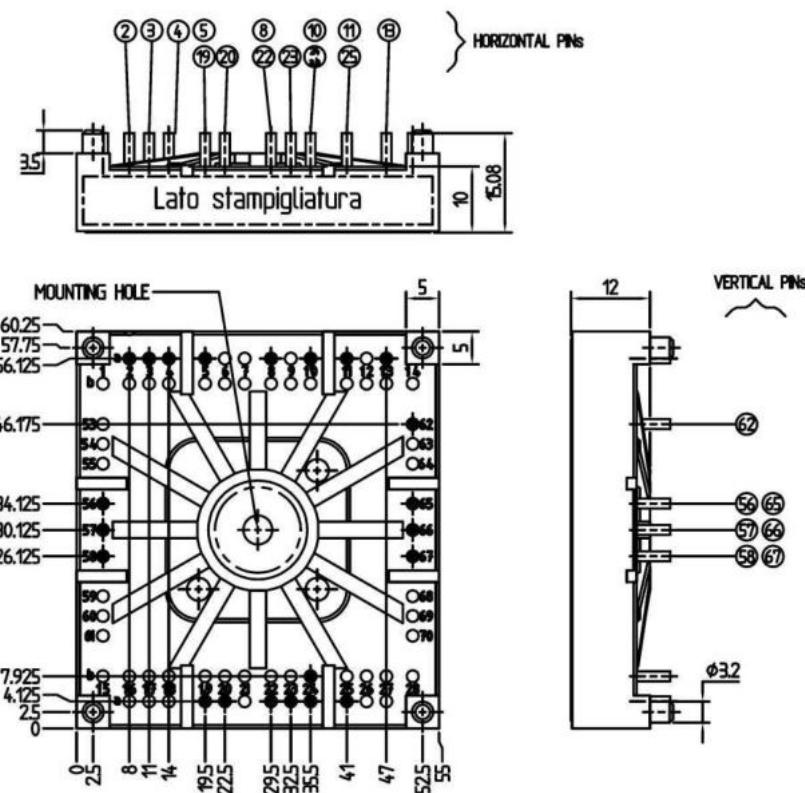
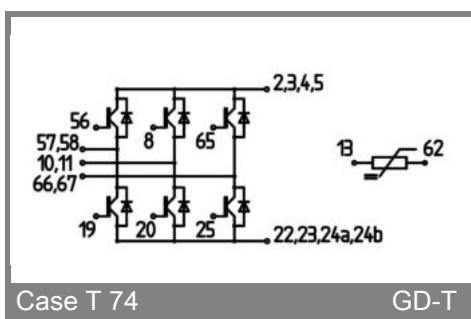


Fig. 8 Typ. switching times vs. gate resistor R_G


Fig. 10 CAL diode forward characteristic

UL recognized

file no E 63 532

Case T74 (Suggested hole diameter for the solder pins in the circuit board: 2mm. Suggested hole diameter for the mounting pins in the circuit board: 3,6mm)

Case T 74

GD-T